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4 Report Summary

The principal investigator, W. R. Madych, participated in the AMS-SIAM
Summer Seminar on the mathematics of tomography, impedance imaging,
and integral geometry held at Mt. Holyoke, June, 1993. He gave a lecture
on his recent work in wavelets and sampling at this seminar.

In the preceding reports we outlined several lines of investigation which
we are pursuing. The following work has been completed since the last report:

* The recovery of irregularly sampled band-limited functions via tempered
splines. In this article we show that band limited functions can be
recovered from their values on certain irregularly distributed discrete
sampling sets as the limits of the piecewise polynomial spline inter-
polants when the order of the splines goes to infinity. This is significant
extension of the classical case when the sampling set is a lattice which
was considered by L. Collatz, W. Quade, I. J. Schoenberg, and others.

e Orthogonality criteria for compactly supported scaling functions. The
question of whether the integer translates of the scaling function con-
structed from a prescribed scaling sequence in the standard way are

mutually orthogonal is quite subtle. The various conditions and the
supporting arguments which are currently in the literature are very
complicated. In this article we give new simple proofs of several crite-
ria for the orthogonality of the integer translates of a scaling function.

Both articles are included in this report.
At present we are preparing several papers detailing our grant related

work. The topics include (i) certain questions concerning irregular sam-

pling of signals, (ii) results concerning the breakdown the so-called scaling
functions into more elementary building blocks, and (iii) results concerning
multivariate wavelets and tilings of R .

Finally we mention that in addition to the ongoing work we we have

completed twenty one articles on various aspects of wavelets and their appli-
cations. All of these have been included together with detailed summaries in

the five semi-annual and annual technical reports which have been submit-

ted. As of this date fifteen have been published or accepted for publication
in various scholarly journals and books.
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THE RECOVERY OF IRREGULARLY
SAMPLED BAND-LIMITED FUNCTIONS

VIA TEMPERED SPLINES

Yu. Lyubarskii and W. R. Madych

Abstract
We show that band limited functions can be recovered from their

values on certain irregularly distributed discrete sampling sets as the
limits of the piecewise polynomial spline interpolants when the order
of the splines goes to infinity. This is an extension of the classical case
when the sampling set is a lattice which was considered by L. Collatz,
W. Quade, I. J. Schoenberg, and others.

1 Introduction

1.1 Overview

This paper concerns univariate splines of even order and band-limited func-
tions. The main result asserts that functions in the classical Paley-Wiener
class PW•, that is, those square integrable functions whose Fourier trans-
forms are supported in the interval (-ir, r], can be recovered from their values
on certain irregularly spaced sampling sequences via the formula

lim sk(x) = f(X)

where sk is the spline of order 2k which interpolates f on such a sequence.
For more precise statements see Theorems 4 and 5 in Section 4.3 below. The
sampling sequences {xJ considered here are those for which the correspond-
ing exponential functions {e-"4} constitute a Riesz basis for L((-,Tr, 7r]).

1.2 Background, motivation, and objectives

If f is a function in the Paley-Wiener class then it is uniquely determined by
its values on the integer lattice & and can be recovered from these values
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via the Whittaker- Kotelnikov-Shannon sampling formula

(1"0x) sin T(x -n)
o f(n) ,r(x-n)

n71-oo0-

For example see [27].
Such f's are also uniquely determined and can be recovered from their

values on certain irregular sampling sets {x,,} = f... X- t, < X0j < I ....
In particular if {x,,) is such that the collection of functions p71(e) = e' ',. n E
&, is a Riesz basis for L2([-7-, 7r]) then the natural substitute for (1) is

W S(X)
(2) f(X) = f S(x,, )(

n=0-oo f (X n)( - X.)

where S(z) is the unique entire function of exponential type ir whose zero
set is {x,,}, see [19]. For more references see the discussion in Section 5.

Because sin irx as well as S(x) fail to belong to L2 (-cc, cc) the cardinal
functions

sin7r(x - n) and S(x)
7r(x - n) S'(Xn)(X - X7,)

have relatively slow decay as x --* ±cc. This makes formulas (1) and (2)
somewhat unstable. A perturbation at n or x,, will have significant influence
at points x far from n or x-n respectively.

Schoenberg used cardinal splines to stabilize (1) in [23]. Subsequently. he
showed that if f is in the Paley-Wiener class PW,. and sk is the piecewise
polynomial spline of order 2k which interpolates f on & then

(3) lim Sk(X) = f(x).
k oo

uniformly in x. The spline s, enjoys the representation

(4) Sk(X) = 1: f(n)Ak(x-n),

where Ak(x) is the corresponding cardinal spline function. This fundamental
spline A) is the unique spline of polynomial growth of order 2k with knots
on & which satisfies Ak(n) = 60.7, n E &, where 60, is the Kronecker delta.
Since Ak has exponential decay at ±oc, see [231, (3) and (4) represent a more
stable method of approximating f than (1). For extension to wider classes
of band-limited f's see [24. 22. 18]. The results make essential use of the
lattice structure of the sampling set Z&, particularly the Poisson summation
formula.
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It should be mentioned that the use of splines in a summability method
for the recovery of regularly sampled band limited functions goes at least as
far back as the work of Quade and Collatz [21] where a variant of (3) was
established for certain trigonometric polynomials f. See also [24, page 103].

In the case of irregularly spaced knot or sampling sequences {x•J that
satisfy certain natural conditions the corresponding cardinal functions which
build the interpolating piecewise polynomial splines Sk are also known to
enjoy exponential decay, see [3]. Convenient ways of evaluating such splines
sk(t) in terms of the data {f(xI)} can be found, for example. in [4].

In view of this situation it is natural to ask whether the spline summability
method, which makes essential use of the lattice structure of the sampling
set Zý, can be extended to the case of irregularly sampled data. As indicated
in the overview, Section 1.1, we found the answer to this query to be yes. To
obtain this answer we applied the technique of mean periodic continuation
with respect to a given basis of exponentials to the study of splines with a
biinfinite knot sequence. The goal of this article is to outline the theory and
to show how this machinery works.

To maintain clarity and avoid the use of obfuscating and unessential tech-
nical details we have restricted our reconstruction results to the classical
Paley-Wiener class.

1.3 Contents and notation

This paper is organized as follows:
Section 2 is devoted to a brief summary of certain aspects of the theory

of tempered splines which are germane to later developments in this paper.
Properties and examples of Riesz bases for L 2([-7r. r]) consisting of expo-
nentials {e-zr I as well as notions and results concerning mean periodic
continuation are reviewed in Section 3. The main results together with de-
tailed proofs are contained in Section 4. Various remarks pertaining to the
material found here, citations, and acknowledgements are collected together
in Section .5.

We use standard mathematical notation and only alert the reader that
all Fourier transforms are interpreted in the distributional sense with the
normalization that when f is an integrable function then its Fourier transform
I is given by

ho~ J f(x) e -xdx.
As is customary. the symbols c and C denote generic constants whose val-
ties depend on their occurrence and are usually independent of the essential
parameters in question.

• • •• • •• •3
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2 Tempered Splines

2.1 Knot sequences

The type of knot or sampling sequences we consider in this section are se-
quences of real numbers {X,}nEZ = {... X- 1 < XO < X1 < X2 < ... } which
satisfy the following properties:

(i) A sequence {x,} is sufficiently dense if there is a positive number r,
such that intervals of length 2r centered at x,, n GE, cover all of the
real line 1R. In other words

IRU {x: Ix - x,,i5r}
nEX

(iz) A sequence {x,} is separated if there i- a positive number 6 such that

1Xn - X,•I > 6 whenever n 3 m.

A sequence {x,nEz is said to satisfy condition SDS whenever it satisfies
both properties (i) and (ii). Throughout this section we will always assume
that {x,},nz is a sequence which satisfies condition SDS.

2.2 Splines of even order

Splines were studied by Schoenberg [23] in the case of the knot sequence
{x,,} = & and subsequently investigated and further developed by many
authors; see Section 5 for more references. Here we find it convenient to
restrict our attention to the class of those splines which are also tempered
distributions. This is a natural way of eliminating certain pathological ex-
amples and allows us to use various distributional machinery including the
Fourier transform.

Suppose {f,1 }nZ is a sequence of real numbers which satisfies condition
S DS. A tempered spline of order 2k with knot sequence {x, },Ez is a tempered
distribution s which satisfies

(5) D 2ks(x) = a,6(x - x,)
nEZ

d D2k = d 2k = Dk-1 a,,,ziwhere D is the differential operator _. D d D2" "

dx d DX.{~}kzi
a sequence of constants, and 6(x) is the Dirac measure at the origin. The
class of all tempered splines of order 2k with knot sequence {x,) is denoted
by SIk( {xn}).

4
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The following proposition follows from arguments identical to that used
to prove the corresponding fact in the case {x,,} = ,•. Details may be found
in Section 2 of [17].

Proposition 1 The following statements are equivalent

"* s is in SHk({X,1)

"* s is a function which satisfies the following properties:

(i) s is in C2k-2(R).

(ii) s is of polynomial growth. That is, there are positive constants c
and p such that

Is(x)I : c(1 + IxD) .

(iii) On the complement of {x,,). R\{x,}, the function s is infinitely
differentiable and satisfies D ks = 0.

Thus SHk({X.I}nEz) is simply the familiar class of piecewise polynomial
splines of order 2k which are of polynomial growth and have the knot se-
quence {x, .

2.3 The interpolation problem and its solution

The natural problem of interpolation for tempered splines is the following:

Given a sequence of real or complex numbers {Y,,}z find an element s
in SHHf,({.r}) such that s(x•) = yn for all n in &.

Since elements of SHk({x,}) are of polynomial growth it is clear that
in order for this problem to have a solution a necessary requirement on the
sequence {y,,} is that it also be of polynomial growth. It turns out that this
condition is also sufficient.

The following result is a basic ingredient in the solution of this problem.

Theorem 1 (de Boor [3]) Suppose k is a positive integer and {x,} is a
sequence which satisfies condition SDS. Then for each integer m. m E &.
there is an element A, in SHk( {Xn }) which satisfies the following properties:

1. For each element x, in {xn} the function A,\ satisfies

Am(xn) = 6
,m,n

where 6 ,.,, is the Kronecker delta.

6 0 0 0 0 0 00



2. There exist positive constants C and c which depend only on k and the
knot sequence {fXn, such that

IA,n,(x)l _< Ce-cl'-•'ý.

for all m E ;Z.

Because of the first property listed above the functions Am are the fun-
damental functions of interpolation. In analogy with classical polynomial

interpolation or with the sinus cardinalis basis, sin ,(X - m) the A,'s arer(X - m)
often referred to as the Lagrange functions or the cardinal functions.

Consider any sequence {y,} which is of polynomial growth and the cardi-
nal splines Am, m E Z, in SHk({X,}) whose existence is guaranteed by the
above theorem. The function

(6) s(x)= y,, A,,(x)
nEZ

is well defined for all real x since the series converges uniformly on compact
subsets of the real line JR. Note that s is a member of SHk({fx}) which
satisfies s(x,,) = y,, for all n in &. Thus s is a solution to the interpolation
problem for the data {Yn}. This solution is unique since each non-zero spline
of order 2k with knot sequence {fX}) satisfying s(x,,) = 0 for all n E X must
have exponential growth in at least one direction; see the remark preceding
Theorem 3 in [3].

We summarize these observations as follows:

Proposition 2 Suppose k is a positive integer, {x,} is a sequence which
satisfies condition SDS, and {y,j} is a sequence which for some real numb( -

p satisfies
yq. = 0(Ixz.Ip) as n - +oo.

Then there is a unique element s in SHk({x,L}) which satisfies

s(x,,) = .,

for all n in &. Furthermore this element s enjoys the representation (6) and
satisfies

s(z) = O(I11P) as .r ± +_.

S. .. .. . .. . . . - , , ...................



4
3 Riesz bases and mean periodic continua-

tion

3.1 Riesz bases consisting of exponential functions

Recall that a basis {f= } of a Hilbert space N" is called a Riesz basis if for
every linear combination f = _,, a, op in ?"

(7) c Ia.12 < 11ff11' < C E Ia12
n n

where c and C are positive constants independent of f.
Given a sequence {z,, }n,`z of complex numbers the collection of functions

,p,` defined by
(8) = -

-ox < ý <o. nz E ;. is denoted by $({zn}). Thus

(9) e({,I}) = {fPn-}EZ

where the function 4, are defined by (8).
Properties of the collections E({z,}) as bases where first studied by Paley

and Wiener [19] and subsequently investigated by many authors; see Section
5 for more references and further comments. Here our objective is to provide
access to a sufficiently rich class of examples of sequences {z,f } such that the
corresponding S({zn})'s are Riesz bases for L2([-7r, TrJ). Toward this end we
list two results: one is formulated in terms of the geometric proximrnty of the
points {z,} to the integers while the other is formulated in terms of zeros { zn }
of entire functions from a special class introduced by Levin [15., 16] which, in
analogy with the case {zn} = ;Z, are referred to as ,;ne type functions.

Theorem 2 (Kadets [121) If z, = n + w,, n E &, where sup, Iw,I < Oc
and IRe wI < r < 1 then 4({Zn1) is a Riesz basis for L2 ([- r, 7r]).

To state the second result we need to review the following definition.
An entire function S(z) of exponential type is said to be of sine type if it

satisfies the following properties:

1. All its zeros {z.} are simple and lie in a horizontal strip. In other words

{1:} C {C : ItImz( < oIo}

for some positive number yo.

0 00 00 0 0 0 4
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2. The set of zeros {zj} is separated. that is, there is a positive number 6

such that z,, - zj > 6 whenever m : n.

3. For some y > yo and positive constants m and A-

m < IS(x + iy)j < M

for all X, -oc < X < 0C.

4.
log IS(iy)I

1YI
Theorem 3 (Levin [151. Golovin (81) If {z,,} is the set of zeros of a sine
type function then the collection 6({z}1) is a Riesz basis for L2 ([-7r, 7r]).

Examples of sine type functions may be obtained by looking for repre-
sentations of the form

S(z) - e'=zda(f)

where o'(f) is a function of bounded variation on [-7r, r] having jumps at the
endpoints +±r. If the zeros of such a function are separated then S(z) is a
sine type function. A specific concrete example is given by

N-I -

S(z) = *" sin r( -)
N

where the a 's are positive numbers satisfying 0 < ao < a, < ... < av- <

N: its zero set is U•'=o (N&+ a) = UkEZ{OO+Ak. aN-1 +Nk. choosing
small a, *s shows that the gaps in such a sequence can be very large.

Before leaving this section it should be mentioned that necessary and suf-
ficient conditions for the collection $({zft}) to be a Riesz basis for L2 ([-7r. r])
were obtained by Pavlov [201, see also [101. These conditions are in termis of
zeros of certain entire functions.

3.2 Sampling sequences

The kind of knot or sampling sequences we will be interested in for the rest
of this paper are sequences of real numbers {X,1},z = .- x1 < x0 < xr <

X2 < ... } such that

(10) S( {.rn}aEZ) is a Riesz basis for L2 ([-,-. r]).

• • • •• • •
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We call such sequences RRB sequences or say that it satisfies condition RRB.
Thus. {xI }1Ez is an RRB sequence if it is a sequence of real numbers and the
corresponding sequence of exponentials .({ X,}),,z) enjoys property (10).

It is clear that every RRB sequences must be separated, that is. it must
have property (ii) in Section 2.1. Otherwise it is easy to check that the left
hand side inequality of (7) fails.

Furthermore it is a direct consequence one of Beurling's celebrated results.
see [2, 14], that every RRB sequence {x,,}Iz must satisfy

(11) liminf - <inf #({x,}nazfn(aa + r)) >- 1

where (a.a + r) denotes the interval a < x < a + r and #Q denotes the
number of elements in the set Q2. It is clear that any sequence which satisfies
(11) must be sufficiently dense, that is. it must satisfy property (i) in Section
2.1. Otherwise it is easy to check that th- right hand side of inequality (11)
is zero.

These observations are summarized as follows: Every RRB sequence
satisfies condition SDS.

3.3 The operator of mean periodic continuation I

Suppose that {x,} is an RRB sequence. Then each function h in L'([-7r. Tj)

enjoys the representation

(12) h(f) = a, e-Lx-. -7 r< r,
nEZ

where the sequence of coefficients {a,} satisfies

(13) cl {a.f}1l1t z) <_ IlhllL:(l ,r... ) _< Cjj{afj}jl (Z)

where c and C are positive constants independent of h. Note that the series
on the right hand side of (12) defines a prolongation of the function h to the
whole real line. We call this prolongation H. Thus

(14) H(ý) = F a, - :- c < c < o.
nEZ

where the sequence of coefficients {a,} is the same as that in (12). By virtue
of (13) the series (I ) is locally L' convergent and the function H(ý) is locally
in L'.

0 0 0 0 0 0 0 0 0 4l



Consider the linear operator A : h -+ Ah which maps L2 ([-7r, 7r)) into

itself and is defined via

(15) Ah(ý) = a. e-2 "e-iX". -,'r < <r,
nEZ

where the coefficient sequence {a,,} is uniquely determined by h via (12).

Because the functions
(16) P.( = e- n E

are a Riesz basis for L2([-7r. r]) the operator A is well defined and invertible

on L2(Q-r,7rJ). Similarly the integers powers of A, A' = AAJ- 1 , j E Zý.

may be defined via

(17) Ajh(,c) = a, e 2 'j" e-", -Tr < 7r.

nEZ

Again, because the collection of functions £({x,,}) = {p,} defined by (16) is

a Riesz basis the operator norms of Aj are uniformly bounded. namely,

(18) IIA2 hIIL2([,t_,,r <_ CJlhIIL2([_,,rl), J E -1

where C is a constant independent of j and h.
Note that A'h can be expressed in terms of the prolongation H as follows:

A-h(ý) = H(± + 21rj), -r _< < 7r.

For this reason A is referred to as the prolongation operator or the operator

of mean periodic continuation with respect to the collection $I {JX}).
We will also need a representation of the adjoint A' of A. To this end

consider the Riesz basis {J:,} which is dual to {;.•} in L 2([-ýr. ,']. Then if
h in L 2([-wr, -.]) enjoys 'he representation

(19) h(f) = a: -7r < < ,-.
nEZ

where the coefficient sequence {a-} is uniquely determined by h, it is clear

that
(20) A'h() = t a-T e,2 .. ) _ _ • _< T.

nEZ

and. more generally. for all j E /.1 (,A) = (.4J)" = ."A' has the representa-

tion

(21) AX'h(f) = a i2j ( -T < < T.
nEZ

Since it will be used often in what follows, we remind the reader that the

operator norms of {.4")} are also uniformly bounded.
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4 The recovery of band-limited functions

4.1 The Paley-Wiener class and spline interpolation

If 0 < 03 < oc the Paley-Wiener class PW,3 consists of those functions in
L2(-oo, o) whose Fourier transforms have support in the interval [-13,3J].
In other words

PWJ f E L2(-occc): suppf C [-13]

We remind the reader that such functions f are restrictions to the real
line of entire functions F(z) of exponential type 3. In particular such f's are
continuous and well defined pointwise.

Suppose {x•} is a sequence which satisfies condition RRB. If f in PW,,
then the sequence of values {f(x,)} is in t 2(&). Define Skf to be the spline
in SHk({x•}) which interpolates f on {x,,}, namely,

Skf(x,ý) = f(x,,) for all n E &.

In view of Proposition 2 the function Skf is well defined; that is. Skf exists
and is unique.

The remainder of this paper is devoted to showing that

lim Skf(x) = f(x)

uniformly and in L2(-cc, oc). Thus in what follows we always assume that
{x,,j is an RRB sequence, f is in PW, and Skf is the element in SHk({rx})
which interpolates f on {x,}.

4.2 Elementary properties of skf

In view of the exponential decay of the A,,'s and the fact that $({x,,}) is a
Riesz basis for L2([-T, T]) it should be clear that the mapping f -- Skf is a
linear transformation from PW, to L2(-.:c. oc) which satisfies

(22) IISkf1IL(-,,,.) •- cII{f(x.)}fl,2(z) < C11fjjLý(-._..)

where c and C are positive constants independent of f.
Since D2kSkf(x) = Z,,zan(x - x,•) we have

(23) • 2
ý-k.f(ý) = (4)

11



where
(24) %Pk() = (-)k E a.etz-.

nEZ

Sf(•) is in L2(-oc,oc) implies that 'k(') is locally in L2 and, in par-
ticular, is in L2([-7r, 7r]). Because of (24) and the fact that {x,} is an RRB
sequence we may conclude that

11'Pk11L'ý(l(2j-1),r, (24-1)lr]) !5 C11'Pk I1L([-x,r])

where C is a constant independent of j and that EI,,z la,, 2 < cc. For later
reference we denote the restriction of 'Pk to the interval [-r, ir] by Ok; in
other words Vbk = xIkl[[-_,,] and if (2j - 1)7r < C < (2j + 1)7r then

(25) Tk(ý) = A31kk(ý - 27rj)

for all j in & where A2 is the prolongation operator defined in the previous
section.

In view of (23) we may write

(26) Skf() = 2k

and

Jj k ( ) 1 V - . . = IjS kf( f)I 1i L2(l _w , 'r) + (2j if l

which by virtue of (25) may be re-expressed as

(27) 11 L(~II2(-00.00) = II§kf(ý)IJbL-,i + E -) (~2 7r )2k Id

Proposition 3 The function •Ok satisfies the relation

(28) Wk(ý + E A"( 1 4jVkq
2 JEZ\ 0 (q + 27,j))v

for -ir < <r where A is the prolongation operator and A* is its adjoint.

Proof: Write
7f(ezxrdr = 27rf(x,) = 27rSkf(xn)

12
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jEZ (2j-1) r

r~ "k(C + 2rj)2k

jEZ -w

A' Z 12 k(A(i)dý
jEZ

and hence
(29 A-j( (AiV'k)(r7))(w)e ix.d,.(29) L] (e)eiX•'d' = f { Z A (& +

(.7 27rj)2k

Since (29) is true for all n in Z and {xn } is an RRB sequence it follows that

E() = ZI A( 2j)2 Ajtk()(
jEZ (r+2irj+ k

which is the desired result. U

For later reference we re-express (28) as

(30) Stf(f) + E A*'( (• + 2)) AJ ,•(r))(,)
2EZ\{O}

for -ir < 7 _ r. If we use the notation 9k to denote the restriction of Skf
to the interval [-r.,r], in other words 9k = Skf-. then (30) may be
expressed as

(31) ýk(fl)+ E A-(( .- 9 21) (A2 ( ý)k(' )r)(0~) W (s)
j EZ\{O} (

for -T <_ < _r. This expression may be abbreviated to

(32) (I + Bk•M))

1:3
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where ;k and f are elements of !,([-r, w]) and I, Bk, Mh are linear operators
on L r([-]r,ir) defined by

SBkg(f) = A- A'((I +2j)-2kZjg(rq))(g)

jEZ\{O}
Vjkg(ý) =(/r2gC

and ! is the usual identity operator Ig(ý) = g(f). Note that

11IBkglIL2(tt-,,,, -< :5 E C ) }I1Lt- ,]
_ jz•o}(21j - 12

or, more simply,(33) IIBkglIL2tt--,.]) -< ClIIgIL2t[-,,,D]

where C is a constant independent of k and g.

Lemma 1 If f is in PW, and Ok is related to I via (28) then

(34) II¢kkIIL2tt--.-D, -< 7r2 IIflIL2(t--.+Dl

Proof: Take the L2([-r, 7r]) scalar product of the function gt'k with both
sides of (28). This results in

(35) Ok ,hk) + Z A)t 'k A'. k) = (, ?Pk).

gk )EZ\({O+ ( + ( 2 rj) 2 1'

Since the summands on the left hand side of (35) are non-negative we have
(36) ?&) :5 O)1.

Inequality (36) together with

L j (, Pr)< k )
ý2k'

noel

imply that

II

which. upon simplification, is the desired result. 0



Lemma 2 Iff is in PWVV then

where C is a positive constant independent of f and k.

Proof: By virtue of (30) we may write

II ~k'flI1 t.•D<IJIL2(([-,,,, • I

(38) + iA-j((• + 2j)-2k A2iL'k)1L2(t_.
jEZ\{O}

Now

A(( .- 2k Ik' (2jC- 1)2k 1113 + 23)) A IIlL2((_r,,,) <2j • l)2 -'2" IPIIL2U([-irl)

where C is a constant independent of j, k, and f. In view of (34) the last
inequality together with (38) imply the desired result. U

Proposition 4 The mapping f -- Shf from PW, to LN(-3c, 3]) is bounded
uniformly with respect to k. In other words, if f is in PWr, then

(39) I[SkfllL :'(_oo, .o < C U l"fl .r.(_ o o)I

where C is a positive constant independent of k and f.

Proof: In view of Plancherel's formula (39) is equivalent to

(40) iiSkfjIL,(_ooo) • CIII IL2(_o).

To see (40) use (27), the identity

/j~() ( - 2k
2rj = + 2j ()W)•(+ 2r] 71)2k ýr(

and the fact that

.2) -2k . (2fj < ICIL2lr~
+ 21

IT +72k• ( )[L (-,,I (21jl - 1)2k " , ?4ll'k[L (- ,I

to write
S2 < 11 2

11 §kfjj L2(.o.o A 'IlL2([- .,,,I)

(41) + 1:{ o (2IjI-1)4k } iýk112
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Sinceý the constant C in (41) is independent of f and k, inequalities (34) and
(37) together with (41) imply the desired result. U

4.3 Behavior of Skf as k --, c.

Theorem 4 If f is PW, then

(42) lim Ilf - SkfIIVL(-.o,.) = 0
k-o

Proof: By virtue of Plancherel's formula (42) is equivalent to

(43) •im 11f s-TiIL2(_0ooo) = 0.

To see (43) use the fact that f vanishes outside the interval [-7r, 7r] and write

S- . = -§ Skfj 2 ([2.... )

(44) + IIkfjI• 2

.EZ\(0}

Estimate the size of the first term on the right hand side of (44) as follows:

Let sk denote the restriction of S§f to the interval [-7r, 7r] and recall relation
(32), which is (I + B,•M'I).• = f.
In view of Proposition 4 it follows that the operators I + BkMk are invert-
ible as mappings from L2 ([-7r, 7r]) to itself and the inverses are uniformly
bounded, namely

(45) 11(1 + - - C

where C is a constant independent of k. Thus we may write

f - 9k = f - (I + BkMk)-'f = (I + BkAMk)- t Bk-fkf

or more directly
(46) f - .gk = (I + BkVlk)-'BkVlkf.

Recall that the operator norm of Bk is bounded independent of k., see (33).
This together with (45) and (46) imply that

(47) II5- 5,-IIL2(l-,f.,l) < ClIMfIIL2([-.J,

16



which is the desired estimate for the first term.
Estimate the size of the remaining terms on the right hand sidc of (44)

as follows: Use reasoning similar to that used to obtain (27) to write

(48) F- ' J••• d(48 ~Iib fII~2([(2 )-n),r,( 2j+l)l]) = • • (• +2r j) 2 k .~

jEZ\{Oj E\1

Note that
(49) Ajbkk = 7r

2kAj.7Vk.k

where, as above. -k is the restriction of Skf to the interval [-7r, 2r] and
Mk•sk(O) = (O/r)

2
kAk(ý). Thus

AjVjk(ý) (_ / -2k

(50) - ý (2+i2 Aj)2' ( +2)

and the jth term on the right hand side of (48) is equal to

fi ~+ 2i ) A'Mkk(ý) 2dý

which is dominated by

{ (2,jjC l)2k I'i1ksk}IL2(l ... l)}.•

Hence we may write

jEZ\{o)

where C is independent of f and k. Now

(.52) llMV .+hjILl ((-,r,.) < Il', fIIL,(t .... ) + I11 ,k(Sk - f)IIL2(r .... )

and clearly
iMk(Sk - f)IlL2(t..) - . - fllk.

In view of (47) the last inequality may be replaced by

(53) IIUk('Sk - f)IfLd[l . ClIM]kIIL2([ .... )

where C is a constant independent of f and k. Combining (51). (52), and
(53) results in the estimates

(.34) IliL2(ll.) < ClIMfIIL2([..)

17
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and(5 5) E llg> k / llL '([(2j+ 1) 7r, ( 2j+ l) rl) -5 C I V k l 2 - r ,j

iEZ\{O}

where C is a constant independent of f and k.
Estimates (47) and (55) when substituted into (44) lead to

(56) ii! - Q-fIlL2(-.,) < CIINkfIiL2(-.,l)

where C is a constant independent of f and k. Inequality (56) implies the
desired result since Aj'kf(ý) = (ý/ir)2kf(ý) and the Lebesgue dominated con-
vergence theorem imply that

lrn [IMA~fIIL2UE-,,l) = 0.

Inequality (56) is interesting and worth re-statement as a corollary of the
above argument.

Lemma 3 If f is in PW, then

(57) Lf- _.f,.I-•,) < C M 2dý

where C is a constant independent of k and f.

The technique used in the proof of the theorem leads to other convergcnce
results. For example, to estimate the pointwise difference between f and Skf
we may write

Skf(x) - f(x)

(.58) 1 f /Sf()-f(Dezd + /I k()
27r _Y ýJi~>lr

The first integral on the right hand side of (58) can be estimated via the
Schwartz inequality and (47) to get

(59) .(sk(f) - f(•) _ fkfIIL2(V.,])

where C is a constant independent of f and k. To estimate the second
integral on the right hand side of (58) use (26) and reasoning similar to that
used to get (27) and write

(60) Sf)e'xýdý = Z fr(.2k e + d.
jEZ\{o} -• + 2-,r)

IS
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Now use (49) and (50) to see that if Ij is the j-th term oi the right hand
side of (60) it can be expressed as

= -2j) -2k 'M.kfexý2jd

Using the Schwartz inequality results in

(61) III ý JIA2M k IV(-,J - {f - 2j) d}2

Since the first and second terms in the product on the right hand side of (61)
are dominated by

CIIMV•/fjLý([ .... ) and 2i
(21j I- 1)2k

respectively (the first follows from (54) and the second by direct estimation)
we have

C
(62) (21jI - lJ)k

where C is independent of j. k. and f. Thus

Ij~kf()e~d~ JEZ\{O)

E oZ\{O} (21jI- 1)2k }lMkfIIL2([ .... )

which may be simplified to
(63) f£> S'•f(•)e~dKj _< CtIMkfll2(V[ )

(63)

where C is a constant independent of k and f.
Combining (59) and (63) to estimate the integrals on the right hand side

of (58) leads to a bound on ISkf(X) - f(x)j. We summarize this as follows.

Theorem 5 If f is in PWV, then for all r in JR

(64) ISk-f (r) -f (X)1•5C f-' ( ý) 2k ýd~

where C is a constant independent of k and f. It Jollows that

(6.5) lim Skf(.r) = f(x)

uniformly on JR.

19
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4 4
Estimates (57) and (64) lead to even better convergence results if the

support of f is properly contained in the interval (-r, 7r). The rate of con-
vergence is geometric and depends on the size of the support. In particular
if the support of f is contained in the interval [-13,3] where 0 < 3 < 7r then
the integral on the right hand side of (57) and (64) is dominated by

(,) IlIL2(-o,•o = 2 2r ( f3)2k

We summarize this remark as follows:

Corollary 1 If f is in PH43 for some 3 which satisfies 0 < 3 < 7r then

(66) 5If - SkffL"(-.,,• <_ C (,)21 If L21-oo,0)

for all p which satisfy 2 < p < oc where C is a constant independent of k
and f.

5 Remarks and acknowledgements

In the next three paragraphs we collect several remarks and indicate further
references which may be helpful. No attempt is made to be exhaustive.

The theory of splines and their applications has undergone extensive de-
velopment in the past thirty or so years. In addition to the references cited
above we mention that [25] is a relatively recent treatise on the subject which
contains an extensive list of references. We note that our version of Propo-
sition 2 is an easy consequence of the material in [3] and bring attention to
the fact that the statement of a version with a less restrictive condition on
the sequence of knots {x, I can be found in [11].

A history and contemporary exposition of the theory of Riesz bases con-
sisting of exponentials. including the results quoted in Section 3.1, is given in
the survey [101. See also the textbook [271. More recent surveys and lists of
references may be found in [1, 6]. Material on mean periodic functions may
be found in [13, 26].

The fact that various classes of band-limited functions. or entire functions
of exponential type. can be recovered from their samples on certain discrete
sets is well known. The general subject area is often referred to as sampling

20
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theory. For surveys which include the result involving condition (11) men- U
tioned in Subsection 3.2 and a list of further references see [1. 6]; indeed most
of the work cited in the previous paragraph is directly related to this sub-
ject. Interesting surveys which include various extensions, generalizations.
error estimates, numerical methods, and further references can be found in
[5, 7, 91.

This work was completed during the spring semester of 1993 while
Lyubarskii enjoyed a visiting position with the Department of Mathematics
at the University of Connecticut; he is grateful to the Department for this
opportunity. Madych was partially supported by DARPA Grant AFOSR-90-
0311.
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Orthogonality Criteria for Compactly
Supported Scaling Functions

Karlheinz Gr6chenigc

Abstract
We give a new simple proof of several criteria for the orthogonality

of the integer translates of a scaling function.

A scaling function is a function ý E L2 (LR) that satisfies

(1) (X) = F ck q (qz - k)
kEZ

for some integer q, qIj > 1, and coefficients ck E C, and such that the integer
translates ;(z - k), k E Z", are an orthonorrnal system. In order to construct
a compactly supported scaling function ý [5], one chooses a finite sequence of
non-zero coefficients Ck E C, ck = 0 for Iki > N, such that

(2) q F Ck-,qk = 6 1 for all tE Z
kEZ

and

(3) Ck = I
kEZ

If m(ý) denotes the corresponding trigonometric polynomial

N

(4) m(ý) = C
k=-N

properties (2) and (3) are equivalent to

I for all ýE!R

and
(6) m(0) = 1.

*The author acknowledges the partial support by a DARPA Grant .\FOSR-90-0311.
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The scaling function o is then obtained from the infinite product

(7) ý() = f m(q-'ý)
j=1

and Fourier transform o(x) = fn ý(ý)er'lxdý. The infinite product converges
uniformly on compact sets to ý E L2 (IR), ;(x) has compact support, and
satisfies the scaling relation (1), see for instance [51, Ch. 6.

The question whether the integer translates of such a p are mutually
orthogonal is more subtle. Conditions (2) and (3) are necessary, but not
sufficient to imply orthogonality.

In this article we give a new and simple proof of several orthogonality
criteria obtained by A. Cohen, W. Lawton, J. P. Conze and A. Raugi, and
9. Sun.

Since "almost all" sequences satisfying (2) and (3) lead to orthogonal
translates, we characterize the case of non-orthogonal translates.

The non-trivial part of the proof will consist in the analysis of the operator

q-1 +~~~ 2 ,,

Tf(E) = E mn- f .

By (5) the constant 1 is always an eigenfunction for the eigenvalue 1.

Theorem I Let m(ý) be a trigonometric polynomial satisfying (5) and (6)
and _;(c) = H1- m(q-') E L2(Il?). Then the following statements are equiv-
alent:

(A) The translates ;(x - k), k E X, are not orthogonal.
(B) There exists a nonconstant nonnegative trigonometric polynomial f

so that Tf = f.
(C) There exists a ý E (0, 1) so that qN" =_ (mod 1) for some N > I and

jm(ql')I = I for all j > 0.

(D) There exist integers N, s > 0, 1 < s < q"4 - I so that

m( 3-- ) + I =0 forall j>O and 1=1,2.... q-1

(E) There exists rq E (1,2) with the following property: For all k E Zý
there is a j(k) > I such that

m (q k q + k)) =0

2



Remarks 1. The equivalerce (A) • (E), due to A. Cohen [1), was
the first known characterization of orthogonality. It is usually formulated
positively in the following way: The integer translates of ý2 are orthonormal if
and only if there exists a compact set K C IR which contains a neighborhood
of 0 and satisfies UkEz(k + K) = 1R, (k+K)nK K= fork #0, such that
m(q--') 0 0 for all j > 1, and E E K (rni satisfies Cohen's condition").

The characterization (A) #, (B) was found independently by W. Lawton
[8] and J. P. Conze and A. Raugi [4]. The arithmetic characterizations (C)
and (D) appear in A. Cohen and Q. Sun [2], and (A) 4-. (C) can also be
found in [4]. The analysis of eigenfunctions of T also figures prominently in
[3].

2. The equivalence (A) #ý (B) €* (E) extends to more general filters m
and also holds in higher dimensions [i, 8, 9].

3. Our contribution is a new organization of the proof which makes all
but one implication trivial and a new argument for the crucial step from (B)
to (C). Compared with the proofs in the references above or in [5] our proof
is simpler and much shorter. U

Proof: \Ve first remark tha. by Poisson's summation formula

(8) Zy~ k)t 2= ( pxyz- k) dx)e2-. ký.
kEZ kEZ

If ; has compact support, then f(•) :-- ZkEZ lv(ý - k)12 is a trigonometric
polynomial, and the translates ý(x -k) are orthonormal if and only if f(s)
I for all •.

(A) • (B). If {•(z - k), k E X} is not orthonormal, then f(ý) is a •
nonconstant nonnegative trigonometric polynomial. Using ¢(•)=
we obtain

q 0 q

(B) • (C). Set ,,,,(0) "-m(q'). Then

(10) Tnf(c) = 7-

as is easily verified by induction. Since TI = I, we also obtain

(11) T"I= '12 = I for all (.
k=0

3
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Now assume that Tf = f for some nonconstant nonnegative trigonomet-

ric polynomial. Then one of the extrema is assumed at an interior point
0, 0 < ýo < 1. Without loss of generality we may assume f(,) _ f(ýo) for

all ý E IR. The hypothesis Thf = f for all n and (11) yield

(12) O=qf - " 1f= 0 m ') If(o)-f( -))
k=0 q

As all terms in (12) are nonnegative, either f(ýo) = f(E.k) or mn,("-k) - 0
holds for each k.

Let M be the finite set of maxima of f and C = card M. Then

(13) {k: = +__ and #m +n

Consequently for each n the sum in (11) contains at most C non-zero
terms and there is a k., 0 < k_ < q n, such that

(14) Mn (ýO +knz ŽC

We can now choose an infinite subsequence n(i) so that

(15) •6k+ k(;) 0EA4.• 0, 1 for all i.
qn(i) "

Since q nli)ý = ýo + kn(;) co( mod 1), there exists an N > 1 such that
qNý _= ý( mod 1), e.g. N = n(2) - n(1).

Finally, since qj+l% =_ qj1 ( mod 1) for all 1,j J_ 0 and since the sequence
[m,(ý)h n = 1,2 ... , is decreasing, we obtain for L > I

N- [ -1i IlL

(16) fj jm(qj')[ =. (17 Im(qj)J) >

,(i)- I IL =I L

_> lin-i 1 I rm(q() I Uim-_ "l.j()) Z c-
j=O

As L was arbitrary, we obtain the desired conclusion Irn(q-1)[ = 1 for all

j 0.
(C) =ý (D). As qNý = c (mod 1), we have q"ý = + s for some s. I <

s K qN - I and thus • = q-'I. By (5) and by the assumption jm(qjC) =

we obtain ,m(9-1- + q) =0 fore = 1,... q -1.

(D) • (E). Set rq= + 1. We will verify that for each k E z there
isa JE ;, J >_0, such that

(1Y) 1+ k qas t
qJ~ qNV1

4
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forsomer E {0,1....,N-- 1, I {1,...,q--} and AlE X. If(17) holds,
then by hypt-hesis m(-Ir'k+) = 0.

Given k E Z, we consider the sequence
[ = q s v k ) = [- l = 1,...

a =q- -- sy'•qoNVk+l i) -~ Sqj(qNV 1 ) +---:- j 01..
a=o -j (q`

where [z] denotes the smallest integer < x. The accumulation points of {a1 }
are the numbers - • &, r = 0. 1,., N - 1. Therefore there is a largest

integer J > 0. suich that as E ,•, but aJ+I ý E, i.e., aj+l = + Al for some
I E {1,2,..., q - 1} and Al E &. Rewriting aj+l as

I (f14 4 1(5 I s
aj+I qT~('q'q +k+1 s q-7L--_+k+ l- qN_[=

qJ_+ C. .1a=O qJ4l.qN l q N q

yields (17).
(E) = (A). If for all k E Zý m(q-j(7 + k)) = 0 for some j > 1, then

( + k) = I1t m(q-'(r7 + k)) = 0 for all k. Thus

E Y(,7 + k))2 = 0
kE Z

and the translates p(x - n) cannot be orthonormal by the remark at the
beginning of the proof. U

The theorem furnishes a quick proof for the classification of self-similar
tiles and Haar bases of L 2(IR) which was obtained in [6]. Given q E X, jq) >
1, let D = {ko, k,:.. ., kq,_} be a complete residue system modulo q, i.e.
ki =- I (mod q), and set ck = I/q for k E D and ck = 0 otherwise. Set

(18) Q = Q(D) = {x E iR{: x = q-'Ej, c E D}
5=1

then Q is a compact and self-similar set satisfying

q- 1

qQ= U(k±+Q).
1=0

Therefore its characteristic function 0 = XQ is the (unique) solution of o(x)

E,=0 6(qx - k,). {f(x - k), k E &} is orthonormal. if and only if Q n (k + Q)
has measure 0 for all k # 0, in other words, if and only if Q tiles N.

In the following gcd denotes the greatest common divisor of a given set
of integers.

5
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Theorem 2 ([6] ) The integer translates k + Q, k E X, are mutually dis-
joint (up to sets of measure zero) if and only if gcd ij(ki - k3 ) = 1.

Proof: By the orthogonality criterion f XQ(x)XQ(x - k) dx 0 0 for some
k # 0, if and only if there exists E e (0, 1), such that lm(qjý)J = I for all
j > 0. In this case

q 1.0ImFI > e'rkIE = I

implies that e 2,41f = e2
-'," for some a E [0, 1] and I = 0,1. q - 1. Since

kl€ =- a (mod 1), it follows that (ki - kj)ý E ;Z for all i,j = 0,1,..., q - 1
and by taking appropriate linear combinations also gcd ij(ki - kj)ý E X.
Since 0 < ý < 1, we obtain gcd i,.(ki - kj) > 1.

Conversely, if d = gcd i,1(ki - ki) > 1, then lm(qj )J2 = I for all j > 0. B

It is now easy to obtain explicit compactly supported wavelet bases that
are analogous to the ordinary Haar bases. See [7] for more details.

Corollary 1 ([7]) Let q, ki, Q be as above and assume that gcd i,j(ki - kj) =

1. Let U = (u)ij,.. be a unitary q x q-matrix, such that u1 o = q-1/ 2,
j = O,...,q- 1. Define

q-1I

(19) Oi((x) = •,tijq"qxQ(qx - kj) for i = 1. q -
j=O

Then the collection of functions

qj 1 2
VA(qjx - k) j,k E Z, i =. q-

is a complete orthonormal basis for L 2 (J•?).
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